# Assume Nothing! Why Some Strategies Might Not Work (At First)

Remember when analog clocks were the only kinds of clocks around? I grew up with them, digital clocks didn’t really creep into my life until I was in middle school. I learned to tell time at a very early age because of the lack of cell phones and computers with their digital displays. So, I always assume (which I NEVER should) that my third graders know how to tell the time.

I was reminded once again last week that assumptions are a foolish thing!  We were in the middle of learning about multiplication.  My goal is to expose my students to as many strategies as I can think of to learn multiplication, especially when the strategy relates to real life. I was so excited to share this strategy:

I shared it with my students, eager to see their familiar “oh, I get it” or “I can connect with that” faces.  I got absolutely NONE of that. They just kind of gazed at me with blank eyes.

So I said, “You know, if the minute hand is on the 7, then you know 5 x 7 is 35…?”

Again, nothing.

I couldn’t believe it. I asked (very gently), “Do you all know how to tell the time?” (We haven’t done a time unit yet this year, so I haven’t checked their understanding regarding analog clocks.) Instead of a resounding “yes”, I got many downcast eyes.  I took an anonymous poll by asking them to close their eyes and raise their hands if they know how to tell the time on the clock on the wall.  I was surprised to see only 2 hands go up out of 26. Ouch.

We really cannot assume anything of our students.  Now that I’ve unearthed this little gem, we’ve got two things to work on at once! We came up with the solution of labeling our classroom clock with the numbers to help us get more familiar with each tick mark.  When we get back from break, I am going to brainstorm with my students how we can use the clock in our classroom more often.  The more we use it, the more useful this particular multiplication strategy will become!

# Let THEM Make Those Math Connections!

One of my favorite parts about teaching math (and multiplication specifically) is all of the amazing patterns and connections from one thing to the next.  When I first started teaching I would to preach these patterns to my students.  They thought they were cool, but that was about all.  One day a student in my class saw a pattern I hadn’t seen before, and I realized that it has WAY more meaning if they discover the connections themselves.  Now, when THEY discover the patterns/connections it feels even more amazing, not to mention the fact that it sticks in their minds.

My students finally connected with a multiplication concept today.  We are at the beginning stages of teaching multiplication, so the whole thing is a little mind blowing to them.  They learned to multiply with repeated addition, equal groups, arrays, and with using a number line.  I noticed that they didn’t seem to understand how they were all related.

So I sat them down with a blank piece of paper with the words: “Multiplication: It’s all related!” I asked them to see if they could find how each thing I put on the chart was related.  I didn’t speak as I put up each one, one at a time.

The moment came when I got to the third one…arrays…and placed each square up (in rows of 5).  I heard a few “oh’s!” and hands flew up in the air.  Then they started to predict what my number line was going to do (I drew it out first before the hops-again not even saying a word!).  Seeing them predict meant that many of them were catching on to how they are all connected.  At the end I asked them what they thought the multiplication fact was, and the answer was shouted to me by 26 children.

“5 times 3!”